A METHOD OF CALCULATING THE RADIATION FLUX
AND ITS DIVERGENCE IN REGIONS WITH STEPPED
TEMPERATURE AND CHEMICAL COMPOSITION
DISTRIBUTION

V. M. Ovsyannikov and G. A. Turskii

An approximate method is proposed which makes it possible to compute the radiation flux and
its divergence when the absorption cross section depends in a complex manner on the wave-
length. Radiation scattering is ignored. The method is described for the case when the re-
gion occupied by the radiating and absorbing gas can be divided into finite number of sub-
regions in which the temperature and the chemical composition are constant. Examples are
given of the numerical calculations of the radiation flux.

1. Radiation Heat Flux from a Two-Dimensional Layer. In problems in radiation gas dynamics we
have to solve simultaneously the fundamental system of equations of motion and the radiation transport
equation, the integration of which gives an expression for the radiation heat flux and its divergence, For a
two-dimensional radiating layer of gas, assuming the temperature and chemical composition dependent only
on the transverse coordinate y, we have the following expression [1, 2] for the radiation heat flux at the
surface of the body (y=0):
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qw = 2% S dh § By(v) Ealtr ()] dtr (y), b (y) = o dy’ (1.1)
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Here it is assumed that radiation does not fall on the layer from the outside, A is the thickness of the
layer, t (y) is the optical distance of the point with coordinate y from the surface of the layer taken as the
origin for the coordinate, Ep(t) is the exponential integral function of the n~th order (n=1, 2, 3), B, is
Planck's equilibrium radiation function, (A\) is the wavelength band within which the radiation falls, k is
the reduced volume coefficient of absorption taking into account forced emission depending on the temper-
ature, pressure, and component concentration,

Thus, the optical distance t) can be computed only after we know the gas dynamic field. In actual
problems kj is a rapidly oscillating function of the wavelength A, and so the computation of the integral with
respect to A in (1.1) is difficult.

The method we propose is based on the following two transformations:

1. In the radiating layer we replace the continuous temperature, pressure, and component molar con-
centration distributions by stepped concentrations by dividing the radiating layer into » elementary layers
of thicknesses (Ay) j0= 1, ..., n), inside which the temperature T, the pressure p, and the concentration x;
are constant (Fig. 1). This transformation is partly constrained and partly natural as indicated by the fol-
lowing considerations:

a) at the present time there are no detailed tables for the functions ky (T, p, %) of many variables
but there is a set of functions k) (T, p) of A for some equilibrium mixtures when the temperature and pres-
sure steps are sufficiently coarse;
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To illustrate, we give expressions for the approximating polynomials Sy,, S;,, S, corresponding to
L, 4, I having v=1,2, 3 terms.

Soy = 0.69¢ (toy = 1.44, 8 = 0.31)

Soz = 0.8696¢ — 0.189¢2 (ty = 2.3, e=0.14)
Sos =0.93¢ — 0.2922 1 0.03£° (ky=4, &=0.097)

Sy = 3.3t (tey = 0.29, & = 0.92)

S1p = 3.3t — 2.728 (twy=0.6, &=0.45)

813 = 3.3t — 4.65¢2 - 2.25¢3 (ty =11, &=0.18)

521 =1.22¢ (t(y) = 0.81, g = 0.39)

Sy = 1.562 — 0.6084¢ (tm=1.3, &=0.22)

Sas = 1.84t — 1,376/ 4- 0.3683  (f,, = 1.8, &= 0.113)

Here we indicate the values of t(y) and of the relative error ¢ in the approximation in parentheses.

The coefficients ag of the function I, are chosen so that the relative error in the approximation should
be minimal for t = t(y). We note that even when the degree of the polynomial is small (=2 or 3) the ac-
curacy of the approximation is quite satisfactory, while as y increases the error can be made arbitrarily
small. Figure 2 shows the graph of L,(t) (continuous line) and of its approximations for v =1, 2, 3 (dotted
lines). For simplicity in describing the method we shall consider only the case when absorption is deter-
mined by bound-bound and bound-free transitions. Then kyj, Opj» and the number of particles in unit volume
Nj in layer j are linked by the equation

k;.j = NjS),,'

Free-free transitions contributing to k) proportionally to the product of the ion and the electron con-
centrations can easily be taken into account by a small modification of the method.

Let (Aty) j and t)j denote respectively the optical thickness of an elementary layer j and the sum of i
elementary layers from the first through the i-th, and let n; denote the number of particles in the j-th layer
falling on unit area of the surface y =0

= 2 (Ab);, (An); = nion;,  ny = (Ay); N, (1.4)

=1

Taking the first transformation into account, we can write (1.1) as

Q= D B (T}) = D 2% (1.5)

=1 =1
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Here 7B(Tj) (j=1, ..., %) is the radiation heat flux from an absolutely black radiating layer at tem-
perature Tj and the coefficient zj = 1{=1,...,n) takes into account the difference between the layer and
an absolutely black one and the attenuation of this radiation in the layer 1, 2, ..., j—1; o* is the Stefan—
Boltzmann constant.

For the first layer, z; indicates the degree of blackness.

Consider the graph (Fig. 3) of the function y()(A), defined in implicit form in the Ay-plane by the equa-
tion

Y(v)
S o ()N (v)dy =t

0

where t,,) is fixed. The curve y=y(,)(A) is the geometrical locus of points at the same optical distance tw)
from the wall (y =0) and it divides the whole region [(AM), 0 =y = A] into two: in one part t) = t(,), while in
the other t) >t(,). To take into account the radiation which reaches the wall from the layer numbered j,
illustrated in Fig. 3, we divide the whole range of wavelengths (A)) for each layer j into three: (A)y) i
(A?\m)j, (Ahg)j such that

reE (Ahk)l if << a1

AEAhm)y i B <ty<hy (1.7)
Ae(Aky); i <ty - .

The range (AAK) j of wavelengths does not make any contribution to the radiation flux at the wall from
layer j since, in view of the approximation of the integrals (1.3), the radiation in these wavelengths is com~
pletely absorbed by the layers (i=1, ..., j—1) nearer to the wall. We note that (A\g); = 0 since the whole
graph of the function y = Y(v)(A) lies above the A axis. From the range (AAm)j of wavelengths only the radia-
tion from that part of the layer (Ay) j for which y < ¥(,) reaches the wall. Radiation from all points of the
layer (Ay) j reaches the wall from the range (Axrg) i of wavelengths. We note that if we take into account the
actual absorption spectrum, in general we obtain a function A = y(,,)'1 (y) which is not single-valued in the
layer (Ay)]-.

Hence, some or all of the ranges (Mk)j, (A?\m)]-, (A?\o)jofwavelengths consist of a large number of in-
tervals.,

Using the approximation (1.3) and the subdivision (1.7) of (A)x), we obtain
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Finally, noting (1.8) and (1.4) we obtain the following equations for the coefficients zj (=1, ...,%) of
(1.6):

v
Z, = Z @any M@0 | o0

§==1
v =1 -1 -1 8 1 =
L s-k . jsk 700) j
2=l a (Qw 2 D M M —Fas D Do MV, (1>2) (1.9)
—1 o \ K =1 ik=1 §=1 iy=] is=1 PRI
. o -k
MER A = Byjoni, - - - 0aiy03; GA
(Aho); (1.10)
MG — S Bydh, ME? = § By joni, -+ + o3, A
(8%, (Arpy)
G=lie s K =L, e, =g 8 =1, 0, % @0, .0, 8= 1)

When k=0 the product Oyj, *++ O\ig in the integrals for M vanishes. In a problem with two radiating

layers (w=2) the subscripts ij, ..., ik can only take the single value unity. In such problems the subscripts
may be dropped from M.

In general the integrals M(isk) depend on the temperature, the number of particles, and the composi-
tion of the mixture in the elementary layers (Ay). They are the analogs of the Planck mean absorption coef-
ficient k

Y

kp= S le)_Odh=N S B)‘OG)‘CD\,
A\ ' (YY)

and confain information about the optical properties of the layers (Ay).

When s =k=1 and t) = t(y), for all A ¢ (A\) the integral MUSK) has the value
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which is proportional to kp. By introducing the Planck mean absorption coefficient we avoid integration with
respect to A when solving problems in the limiting case of an optically thin radiating region. By introducing
the integrals M(isk) we can do this for a radiating layer of any optical thickness.

If the integrals Mm(isk) (41 VR nj) are known for tp)=7, then for any other value t)=7% the corre-

sponding integrals, which we denote by MQSk) (g, ..., nj), are obtained from the integrals M(SK) by changing
the scale of the variables ny, ..., nj

MU (na, . .., i) = MU (nre_fx,. .., njr, [ 7) (1.11)
2, Divergence of the Radiation Heat Flux in a Two-Dimensional Layer. The expression for the di-

vergence of the radiation flux at an internal point of a two~-dimensional layer has the form [2]

H(a)

divg(y) = { dr (y){ { 228, () B 116 (0) — 5 (0) 1463, (0) — 4Ba (9)
1]

ar)

2.1)

Here we assume that no radiation falls on the layer from outside.

The difference from the case in which the radiation flux gw at the wall is computed is that div q(y) has
to be compuied at points internal to the elementary layers (Ay) j*

We divide the radiating layer into elementary layers (Ay) j (=1, ..., ®) in accordance with the first
transformation of § 1.

We compute the function div q(y) at the point y ¢ (Ay) j at a distance (Ax) from the point Yi-1+ We in-
troduce new notation for the elementary layers, using Greek letters to enumerate them:

|
|

The new enumeration is shown in the lower part of Fig. 1. For yc (Ay)i, Eq. (2.1) takes the form
]

(Ay); — (A=) for a=1

AY)ay, for a=2...,%—j+1
(Az) B=1

(AY)ip, for B=2,..../

£

for

x—j1 i
divg(y) =21t ) wa;B(To) + 21 ) wey B(Ty) — 4u;B(T)
a=1 B=1
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Here we have introduced new coordinates g and h to denote the distance of the current point y* from
the point y at which div q(y) is computed

g=y —yfor ¥y >y h=y—y for y>y

We denote the coefficients a4 inthe representation (1.3) from Ij by ai. The coefficients a} are chosen
so that I; is approximated with minimal relative error & by a polynomial in the interval (t(r)), (tp)). The
values of a, ¢, t(,) are given in § 1 for the start of the approximation interval t(m) = 0.05. In Fig. 2 the
continuous line is the exact function Ii(t) and the dotted lines are approximations to it.

Finally we have

v
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The subscript i is computed from o or 8 by means of the equations

i=j4a—1, i=j—p+1

The regions of integration (Aho)ij and (N\m)u are defined by equations similar to (1.7) taking into ac-
count the optical distance between y;j and y.

3. Three-Dimensional Radiation Transport. The ideas behind the transformation of Sec. 1 are inde~
pendent of the number of dimensions of the space filled with the radiating gas and so the method is appro-
priate for computing the radiation flux and its divergence in two- and three-dimensional radiation transport
problems. For simplicity we consider the case of the computation of the radiation flux across an area at
a point C from a region G containing a one-component gas.

For simplicity in exposition we shall assume that the temperature distribution along each ray passing
through the point C and intersecting the region G (Fig. 4) is monotonic. The radiation heat flux across unit
area in unit time is given by the following expression [1]:
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a6 Here w is the ray direction, 9 is the angle between the ray direction and

7

(Ay)fz%cr?o § the normal to the areaat C, r is the distance from C to the current point on
the ray, and ry(w) and r{(w) are the distances from C along the ray with direc-
22 N_Z _ tion w to the nearest and furthest boundaries, respectively.
14 10
@y)cm We divide the region G by isothermals into ® elementary layers as shown
Fie. 7 in Fig,. 4, and in accordance with the first transformation of § 1 we replace
ig.

the continuous distribution of T{(r, w) by a stepped one so that in each elementary
layer the temperature can be considered to be constant. Then

%x
9, = S dw'cos GZ zj((o)B(Tj),
(w) j=1

@ = a8y { exp(—n)as
(&% (an;

According to the second transformation of § 1 we can put () in the form (1.3). The coefficients ag
of the polynomial, which we denote by a§, are given in § 1, Figure 2 shows [y(f) as a continuous line and
approximations to it as dotted lines. Then we obtain equations for the zj(w) which coincide with (1.9) if in
them we replace the constant coefficients ag by the a and consider the number n; of particles in the ele-
mentary layers to be a function of the angle w. The integrals MUsK) are computed from (1.10) and depend
on the values of ny(w), ..., nj(w) for the chosen direction w and the value of t(,).

4, Examples of Numerical Calculations. Since the number n of molecules in actual problems is very
large, while the cross sections o) are small, to use equations of the form (1.9) for computations it is con-
venient to normalize the n;j and the integrals M by introducing the variables

nf=n; K, M0 KEMUW 1)

In the numerical calculations we used the following dimensions: cm? for o, cm™ for n, K =108,

Example 1. We compute the radiation flux incident on a wall from two-dimensional layers of a gas
with thickness lying between 0.1 and 10 cm at the single temperature 13,000°K and pressure 1 atm. The
relation between the cross section o) of the gas and the wavelength is shown in Fig. 5 (o, cm?; A, p). In
solving the problem I (t) was approximated by a second-degree polynomial, which ensured an accuracy of
22%.

When n = 0,057 10! ¢cm™, which corresponds to A =0.1 cm, under the given conditions we obtained
MTW0) 0684, MO —q48 MU —9

since M°(1%9) vanishes, we conclude that the range of wavelengths (A\ ;) in which the optical thickness
of the layer exceeds t()=1.3 is very small and does not make a significant contribution to the radiation
flux. Hence for this and any smaller thickness of the radiating layer with n = 0.057-10'% (cm~% A =0.1 (cm)
the radiation flux can be computed from (1.5) and (1.9),which in this case yield

fw = Bz = £14:10" n — 3.49-1078152 (kcal- m=2- secl)

Here n is expressed in cm™2,

As n and A increase by a factor of 100, the integrals M°(1%)n°(120) gecrease monotonically while M°(1%0)
increase monotonically. They are shown in Fig. 6a.

The radiation flux is computed from (1.5) and (1.9), while the functions M(m), M(m), M{to0) are de-
termined using Fig. 6a and (4.1).
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For various values of the thickness A, Fig. 6a gives the ratio of the flux from the layer under con-

sideration to that of an absolutely black body, z = qw/ (tB). For small A~0.5 cm, z increases in proportion
to A and for larger values of A the rate of increase of z diminishes; when 4 cm =A=10 em z tends asymp-

totically to 0.62.

Example 2. We compute the radiation flux at a wall from two two-dimensional layers of a gas: oneat
T; = 3000°K with cross section o) ,as shown in Fig. 5, and the other a layer of air at T, = 14,000°K.

The pressures are p; =py =1 atm. When v =2 we obtain from the equation of § 1:

Qo = 7B (T1) [arn® M A10) L gy (%2 M7 (20 4. p" 000 | b B (T's) [aany® M (210)
4 ag (m M L 2a0n°ng M 1 MR _ gy b G g, (meoy2ay (20

The computed values of the integrals M° are shown in Fig. 6b, ¢ as functions of ny, for n, constant,
corresponding to (Ay), =20 cm. Figure 7 shows the attenuation of the radiation flux from layer 2 due to

absorption by layer 1:
q"=9q,/9,[(Ayh=0]

as a function of the thickness (Ay);.
The author wishes to express his gratitude to E. Filippova for help in the computations.
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